3d Modeling and Real-time Monitoring in Support of Lean Production of Engineered-to-order Precast Concrete Buildings
نویسندگان
چکیده
Previous research has highlighted the efficacy of the application of lean production principles in the precast concrete industry. The work also highlighted the dependence of engineered-to-order prefabrication in construction on both engineering and on process control information for production in construction. In current practice in most precast/prestressed plants in the US, producers typically fabricate pieces well in advance of their erection on site, resulting in relatively large buffers of product stored in extensive yards. This practice is generally attributed to the fact that precast production rates are significantly slower than erection rates, and to erratic demands for product from the erection process. The behavior is reinforced by the industry-wide willingness of building clients to pay up to 90% of the cost of precast products on production, rather than on delivery and erection. However, other factors prevent reduction of inventories: among them are the inability of current numbering methods and information systems to support long term erection sequence planning; the high cost and imprecision of real-time feedback (pull) information from the site and/or project management; and producers’ unreliability in identifying and shipping pieces on time from yards that are difficult to manage due to their size. We propose that resolution of these problems requires concerted application of lean principles, of advanced information technology and of real-time monitoring (using Automated Project Performance Control technologies). The potential of information systems and interpreted monitoring data to support a lean production and delivery cycle for precast construction is explored in relation to each of the problems stated.
منابع مشابه
Performance of the Modified Precast Beam to Column Connection Placed on a Concrete Corbel
Precast concrete structures in Iran are generally designed as continuous columns with hinged beams, thereby making them simple frames. In this system in site show walls in two directions of buildings guaranteed lateral resisting system. However, in order to obtain a seismic resisting frame, the connection between beam and column should be moment resisting and ductile, allowing the formation of ...
متن کاملParametric 3D Modeling in Building Construction with Examples from Precast Concrete
Buildings are complex products containing relatively large numbers of distinct parts that are collected in multiple assemblies for different design, analysis and production purposes. Modeling buildings in fully parametric 3D CAD systems offers numerous benefits in terms of productivity, the ability to rapidly generate design alternatives at different levels, and elimination of errors that resul...
متن کاملSeismic Retrofitting RC Structures with Precast Prestressed Concrete Braces- ABAQUS FEA Modeling
Precast prestreesed concrete braces are a new method for seismic strength of Concrete Structures which has the following benefits: a) no wet concrete work in construction site b) No bolt or anchorage to the existing frame c) easy to apply d) short construction period e) low construction cost, to evaluate seismic performance of strengthened structure a model consist of existing frame and concret...
متن کاملDesigning a prefabricated sandwich composite roofing system Made up of resisting facings and light-weight concrete core with truss-shaped connectors
In this paper, a new roofing system is introduced, which is constructued using the precast composite sandwich panels. This roofing sandwich panels system consists of three kinds of precast concrete sandwich panels including capital panels, beam or between columns panels, and slab or middle panels. The panels are composed of three layers; A high strength reinforced concrete top layer. A thick la...
متن کاملCOMPARATIVE COSTS OF THE PRODUCTION, TRANSPORT AND ASSEMBLY STAGES OF PRESTRESSED PRECAST SLABS USING GENETIC ALGORITHMS
In the precast structures, optimization of structural elements is of great interest mainly due to a more rationalized way that elements are produced. There are several elements of precast prestressed concrete that are objects of study in optimization processes, as the prestressed joist applied in buildings slabs. This article inquires into cost minimization of continuous and simply supported sl...
متن کامل